Mechanisms of ACL Injury: Implications for Rehabilitation, Injury Prevention & Return to Sport Decisions

Christopher M. Powers PhD, PT, FACSM, FAPTA
Associate Professor
Co-Director, Musculoskeletal Biomechanics Research Laboratory
University of Southern California
Movement Performance Institute
Los Angeles, CA

Overarching research theme:

Identification and understanding of injury mechanisms will lead to the development of more effective and efficient clinical interventions

Musculoskeletal Biomechanics Research Laboratory

Movement Behavior Associated With ACL Injury

How do ACL injuries occur?

- 70% of injuries are non-contact
 - Running & cutting
 - Landing from a jump
- 30% are contact – fouls, tackling from behind
- ACL injured athletes often recall unanticipated event, perturbation, or loss of concentration

Christopher M. Powers PhD, PT, FACSM, FAPTA
Mechanism of Injury
(Kirkendall and Garrett, 2000)

- Deceleration/Change in direction
- Knee flexion 0-30 degrees
- Tibial rotation and varus/valgus forces

Gender Bias

- Incidence of ACL injury in females is 4-8 times that of males.
 - Arendt et al., 1995
 - Hutchinson et al., 1995
 - Malone et al., 1993

- High risk group: females 15-20 years.
- Each year, one out of 100 high school female athletes and one of 10 college female athletes experiences an ACL injury
 - Adams et al., 2002

Non-contact ACL Injury: Categorical Risk Factors

I. Structural
II. Hormonal
III. Biomechanical
IV. Neuromuscular

Normal Function

Injury threshold

Biomechanical Risk Factors

- Kinematics
 - ↓ hip and knee flexion
 - ↑ knee valgus
 - ↑ hip internal rotation

- Kinetics
 - ↑ knee valgus moments
 - ↑ knee extensor moments
 - ↓ hip extensor moments

- Muscle activation patterns
 - ↑ quadriceps activity
 - ↓ gluteus max activity

Neuromuscular Control and Valgus Loading of the Knee Predict ACL Injury Risk in Female Athletes

- Prospective study of 205 female athletes
- Those who tore their ACL during the course of a season demonstrated knee valgus moments that were 2.5 times greater than those who did not tear their ACL

Christopher M. Powers PhD, PT, FACSM, FAPTA
Biomechanical Assessment: Drop-Jump

Females: “Knee Strategy”

- Increased Knee Extensor Moments
- Increased Quadriceps Activation
- Decreased Hip Extensor Moments
- Decreased Glut Max EMG
- Increased valgus loading at the knee

“Knee Strategy”

Pollard et al, Clin Biomech, 2010

Males: “Hip Strategy”

- Decreased Knee Extensor Moments
- Decreased Quadriceps Activation
- Increased Hip Extensor Moments
- Increased Glut Max EMG
- Decreased valgus loading at the knee

“Hip Strategy”

Greater Utilization of the Hip Extensors is Associated with Decreased Valgus Moments & Angles

Pollard et al, Clin Biomech, 2010

Christopher M. Powers PhD, PT, FACSM, FAPTA
Hip-Knee ratios

Moments & Energy Absorption

Males vs. Females

Abnormal Distribution of the

Hip and Knee Moments in Females

Why?

- Hip extensor weakness relative to quadriceps
- Quadriceps overuse
- Increased ACL loading (anterior shear)

Biomechanical Assessment:

Side-Step Cut

Causes of Valgus Loading at the Knee

- Ground reaction force vector moves lateral
 - Shifting of COM lateral
- Medial movement of the knee joint center
 - Hip adduction & internal rotation
- Combination of both

Christopher M. Powers PhD, PT, FACSM, FAPTA
• Extensor
• Abductor
• External Rotator

Gluteus Maximus: “The Tri-planar Muscle”

Impaired Gluteus Maximus Muscle Performance & ACL Injury

Sagittal Plane
- Gluteus Maximus Activity
- Quadriceps Activity
- Knee Joint Anterior Shear

Frontal/Transverse Plane
- Hip Abduction & Int. Rotation
- Knee Valgus Angle
- External Knee Valgus Moment

Risk of ACL injury?

Behavioral Changes Following ACL Injury Prevention Training

PEP Program
Prevent injury and Enhance Performance
http://pt.usc.edu/aclprojectprevent

1. Agilities
2. Flexibility
3. Strengthening
4. Plyometrics
5. Technique

Results: Year 1

- Control: 32 ACL’s in 1901 athletes
- Enrolled: 2 ACL’s in 1041 athletes
- 88% reduction in ACL tears

Results: Year 2

- Control: 35 ACL’s in 1913 athletes
- Enrolled: 4 ACL’s in 844 athletes
- 74% reduction in ACL tears

Christopher M. Powers PhD, PT, FACSM, FAPTA
Pre-training biomechanical analysis

ACL injury prevention program

Post-training biomechanical analysis

Improved Hip Kinematics Following PEP Training

– Decreased hip internal rotation
– Decreased hip adduction

Knee/Hip Extensor Moment Ratio

Drop-Jump

*Decreased knee extensor moment

ACL Injury Prevention:
Less Dependence on a Knee Strategy

Ready to Return to Sport??

Implications for Rehabilitation and Return to Sport Decisions:

Evaluating & Changing Movement Behavior

Christopher M. Powers PhD, PT, FACSM, FAPTA
Ready to Return to Sport??

On average, soccer athletes perform 726 cutting maneuvers in a game

Functional Return to Sport Scoring

<table>
<thead>
<tr>
<th>Hip Stability</th>
<th>Shock Absorption</th>
<th>Hip Strategy</th>
<th>Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2 out of 6 total</td>
</tr>
</tbody>
</table>

Adequate = 2; Borderline = 1 Inadequate = 0

Movement Training to Minimize Re-Injury Risk

<table>
<thead>
<tr>
<th>Hip Stability</th>
<th>Shock Absorption</th>
<th>Hip Strategy</th>
<th>Pelvis Stability</th>
<th>Trunk Stability</th>
<th>Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10 out of 10 total</td>
</tr>
</tbody>
</table>

Adequate = 2; Borderline = 1 Inadequate = 0

Christopher M. Powers PhD, PT, FACSM, FAPTA
Concurrent Feedback

Concurrent Feedback

Concurrent Feedback

Concurrent Feedback

Christopher M. Powers PhD, PT, FACSM, FAPTA
Post-Response Feedback
Knowledge of Results

Variability in Practice

Variability in Practice

External Focus of Attention
“Put your shoe between the lines”

External Focus of Attention
“Keep the light pointed straight ahead”

External Focus of Attention
“Stretch the hand”

Christopher M. Powers PhD, PT, FACSM, FAPTA
Contextual Interference

General Impressions Regarding Current ACLR Protocols
- Focused primarily on strength impairments at the knee
 - Quadriceps
 - Hamstrings
- Little attention paid to high level hip strengthening or functional movement training (ie. lack of hip strategy)
- 6 months is too early to return to full contact sport

Are current ACL rehabilitation protocols promoting a knee strategy?

Key Points
- Altered movement behavior is an important contributor to ACL injury risk.
- Poor hip control appears to underlie altered movement behavior associated with ACL injury risk
- Motor skill learning that emphasizes hip control and a “hip strategy” appears to protect against ACL injury risk.
- Adequate hip strength and movement mechanics should be restored prior to returning an athlete to sport.

Musculoskeletal Biomechanics Research Lab
University of Southern California

Movement Performance Institute
Los Angeles, CA

Christopher M. Powers PhD, PT, FACSM, FAPTA